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Abstract: Incorporating insights from quantum theory, we propose a machine learning-based
decision-making model, including a logic tree and a value tree; a genetic programming algorithm is
applied to optimize both the logic tree and value tree. The logic tree and value tree together depict
the entire decision-making process of a decision-maker. We applied this framework to the financial
market, and a “machine economist” is developed to study a time series of the Dow Jones index. The
“machine economist” will obtain a set of optimized strategies to maximize profits, and discover the
efficient market hypothesis (random walk).

Keywords: quantum-like decision theory; genetic programming; machine learning; quantum gates;
efficient market hypothesis

1. Introduction

We live in a world brimming with uncertainty, where we constantly have to make a
lot of decisions with incomplete information. How we make decisions is truly an enigma.
Classical decision theory [1–5] is a “black box”; we do not know what really happens
inside the box. The human behaviors exhibited during decision making, such as the order
effect, cannot be sufficiently explained by decision theory based on classical probability.
Scientists are trying to apply quantum theory to reveal how decisions are made. Recently,
many quantum-like decision theories [6–8] have been proposed based on quantum prob-
ability to revise the mathematical structure that is used in classical models. Aerts et al.
first proposed to apply quantum probability in decision theory [9,10]; Busemeyer et al.
proposed a quantum-like model to describe human judgments and the order effect [11–13];
Khrennikov et al. improved the Busemeyer quantum model by applying quantum instru-
ments of quantum measurement theory [14–18]; Yukalov et al. proposed a rigorously
axiomatic quantum decision theory [19–21]; Xin et al. proposed a quantum value operator
decision theory [22].

Whether it is classical decision theories or quantum-like decision theories, all well-
developed decision models have applied a rigorous mathematical structure to describe
people’s decision making under uncertainty. We are firm believers that people’s subjec-
tive belief cannot be computed by rigorous mathematical formula. The main issue with
mathematical models is that they are difficult to understand, cannot reflect the dynamic
changes in the state of the decision-makers’ mind, and it is not easy to calculate theoretical
values to compare with actual observed outcomes when the mathematical model becomes
more complex.

In this paper, based on Darwin’s natural selection, we propose an algorithm that
incorporates insights from quantum theory to describe people’s decision making under
uncertainty. Our decision model emphasizes machine learning, where decision-makers
build-up their experience by being rewarded or punished for each decision they make,
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preparing them to make better decisions in the future. This is more in line with decision-
makers in the real world.

Our proposed quantum-like decision theory discovers laws of thought by machine
learning an observed time series; there is no differential equation, and no transition proba-
bility computation in our decision theory. We do not model with the usual utility function
or observables of the projection-type in other quantum-like decision theories, but a logic
tree and a value tree. The logic tree determines the state of each point in the time series,
and the value tree calculates the absolute value between two points in the time series. A
logic tree and value tree work together to depict the entire decision-making process of a
decision-maker.

In this paper, a “machine economist” is developed and the Dow Jones index is used
as historical data for training the “machine economist”. The “machine economist” will
trade Dow Jones index futures, build up experience, optimize a set of trading strategies to
maximize profits, and finally construct a theory about financial markets.

2. Quantum-like Machine Learning Algorithm

The change in the Dow Jones index over time can be defined in terms of a time series
consisting of states and observable values in (1).

{(qk, xk)}k = 1, · · · , N (1a)

qk =

{
0, xk ≥ xk−1
1, xk < xk−1

(1b)

where qk denotes the dynamic state of the Dow Jones index; if the closing price of the Dow
Jones index goes up, then the state is 0 (q k = 0); if the closing price of the Dow Jones index
goes down, then the state is 1 (q k = 1); xk denotes the observed value (closing price) of
the Dow Jones index; data sequences {xk, k = 1, · · · , N} describe the trajectory of the Dow
Jones index.

Time series {(qk, xk)} can be considered as questions posed by the market, in which
“machine economist” need to describe and interpret the market based on observed data
sequences. The “machine economist” is actually playing with the market, and the market
is neither optimistic nor pessimistic, but is just playing dice with the “machine economist”.
The “machine economist” tries to maximize the expected value in order to find the most
probabilistically correct answers (maximize profits).

The question now becomes: Can the “machine economist” find an answer?
Here, a quantum-like machine learning algorithm is proposed to answer the questions

posed by the market. A quantum-like machine learning algorithm can be expressed in
terms of two-part trees: the first part is a logic tree, which applies “yes or no” answers to
determine the dynamically changing state of the security, and the other part is a value tree
that describes the closing prices of the security. Together, the logic tree and value tree will
reconstruct the trajectory of the security.

1. Logic tree: to determine the action to be taken and calculate the theoretical value of
the closing price.

2. Value tree: to calculate the absolute value of the difference in closing prices between
two trading points of the Dow Jones index.

The goal of an algorithm Ak in general is to be able to either:

(1) Generate the results to match the observed outcomes;
(2) Predict the next outcome.

In other words, given a sequence of data {(qk, xk)} as an input by the market, a
“machine economist” develops an algorithm Ak to output a sequence of data

{(
q′k, x′k

)}
:
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{(qk, xk)}
input→ Ak(logicTree, valueTree)

output→
{(

q′k, x′k
)}

(2a)

Meet the following formula:

q′k = qk and x′k = xk, k = 1, 2, · · · , n (2b)

q′n+1 = qn+1 and x′n+1 = xn+1 (2c)

Genetic programming (GP) [23–26] is used by the “machine economist” to search for a
satisfactory algorithm. Just as the genes of the fittest of each species are passed down from
generation to generation through natural selection, evolution algorithms can perform the
same action through machine learning.

The idea and steps of GP are simple:

(1) Randomly generate 300 logic or value trees;
(2) Historical data is learned to obtain the fitness of each tree;
(3) The satisfactory logic or value tree is obtained through the Darwinian principle of

survival of the fittest (crossover, mutation and selection) after about 80 generations
of evolution.

The GP Algorithm (Algorithm 1) is as follows:

Algorithm 1. GP Algorithm

Input:

• Historical dataset {(qk, xk), k = 0, · · · , N} (each sample consists of a security’s state and
closing price);

• Setting:

(1) Operation set F;
(2) Dataset T;
(3) Crossover probability = 70%; Mutation probability = 5%.

Initialization:

• Population: randomly create 300 individuals.

Evolution:

Loop: for i = 0 to 80 generations:

a Calculate fitness for each individual based on the historical dataset;
b According to the quality of fitness:

i Selection: selecting parents.
ii Crossover: generate a new offspring using the roulette algorithm based on

crossover probability.
iii Mutation: randomly modify the parent based on mutation probability.

Output:

• An individual of the best fitness.

2.1. Value Tree

A value tree is a traditional function tree. The final form of the value tree is represented
as a function. The output from this function is a numeric value. For a value tree the
operation set F and dataset T are as follows

(1) Operation set F = {+,−,×,÷, log, exp};
(2) Dataset T = {t, fl, av, h, l}.

where t denotes the t-th trade of the Dow Jones index time series; fl denotes the
average fluctuation of the closing price; av denotes the average closing price; h denotes the
highest closing price; l denotes the lowest closing price.
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A value tree is a function that consists of operation set F and dataset T.

valueTree = f(F, T) (3)

We define the absolute value of the Dow Jones index between two trading points
as follows:

dt,t−1 = |xt − xt−1| (4)

The “machine economist” can calculate the absolute value between two trading points
using the value tree:

d′t,t−1 = f(F, {t, fl, av, h, l})− f(F, {t− 1, fl, av, h, l}) (5)

Now we can define the fitness function for the value tree as follows:

fitnessvalueTree = −∑n
k=1

(
d′t,t−1 − dt,t−1

)2 (6)

where d′t,t−1 is the absolute value calculated by the value tree in (5), and dt,t−1 is the
observed absolute value of the market in (4). The fitness function is essentially a particular
type of function that is used to summarize, as a single figure of merit, how close a given
design solution is to achieving the set aims. Fitness functions are used in GP to guide
simulations towards optimal design solutions. In order to reach the optimal solution, the
GP algorithm implements a continuous evolution process through selection, crossover, and
mutation. The goal of continuous evolution is to find a satisfactory value tree that makes
d′t,t−1 as close to dt,t−1 as possible.

2.2. Logic Tree

A logic tree is a matrix tree constructed from eight basic quantum gates. The final form
of a logic tree is represented as a matrix. The output from this matrix is a vector (an action,
for example, buy or sell). The purpose of the logic tree is to simulate the decision-making
process of the “machine economist”. Table 1 shows that the Dow Jones index has two
states: q1 (index up) and q2 (index down); the “machine economist” has two possible
actions to take, a1 (buy) and a2 (sell). p1|x, p1| − x, p2|−x, p2|x are four possible outcomes
determined by both the market and the “machine economist”. For example, p1|x means
that the “machine economist” takes action a1 (buy) with a subjective probability of p1 and
makes a profit x amount of money because the index is up (q1); p2|−x indicates that the
“machine economist” takes action a2 (sell) with a subjective probability of p2 and loses x
amount of money because the index is up (q1).

Table 1. State–action–value decision table.

Action
State q1 q2

a1 p1|x p1|−x

a2 p2|−x p2|x

The market influences the traders’ decisions, while all traders’ actions then decide the
market’s state. This interaction between the two, the objective (state of the market) and the
subjective (traders’ beliefs), is what causes both the result of the decisions (gain or loss) and
the state of the market (up or down) to be uncertain.

The state of the market describes the objective world; it can be represented by the
superposition of all possible states in terms of the Hilbert state space as shown below [27,28].

|ψ〉 = c1 |q1 〉+ c2 |q2 〉 (7)
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where |q1 〉 denotes a state in which the market has increased, and |q2 〉 denotes a state in
which the market has decreased. |c1|2 is the objective frequency of the increase; |c2|2 is the
objective frequency of the falling market.

The state of the trader’s mind is the subjective world. We postulate that when the
trader is undecided in making a trade (buy or sell), it can be represented by superposition
of all possible actions as follows.

|φ〉 = µ1 |a1 〉+ µ2 |a2 〉 (8)

where |a1 〉 denotes the trader’s action to buy, and |a2 〉 denotes the trader’s action to sell.
p1 =|µ1|2 is the trader’s degree of belief in betting that the market will rise; p2 =|µ2|2 is
trader’s degree of belief in betting that the market will fall.

The information available to the “machine economist” prior to making its decision is
incomplete; the “machine economist” does not know whether the market will rise or fall,
forcing the “machine economist” to essentially guess. Before a “machine economist” makes
a decision, its mind state is in a pure state, a superposed state in which it can decide whether
to buy and sell at the same time. However, in reality, the “machine economist” cannot take
an action to buy and sell simultaneously. This pure state is when the states of buy and sell
are superposed in the “machine economist’s” mind. Then, when the “machine economist”
makes the decision, the state of the “machine economist’s” mind then transforms from
that pure state ρ into a mixed state ρ’, which is when it decides to buy or sell, with certain
degrees of belief. Basically, this transformation is the “machine economist” choosing from
one of the available actions, with action a1 being buy with probability p1 and action a2
being sell with probability p2, shown below.

Tradingprocess : ρ =|φ〉〈φ| decision→ ρ′ = p1 |a1 〉〈a1| + p2 |a2 〉〈a2| (9)

It is expressed in matrix form as follows:

ρ =

[
ρ11 ρ12
ρ21 ρ22

]
diagonalization→

[
λ1 0
0 λ2

]
normalization→ ρ

′
=

[
p1 0
0 p2

]
= p1 |a1 〉〈a1|+p2 |a2 〉〈a2|

(10a)

|a1 〉 =
[

1
0

]
, |a2 〉 =

[
0
1

]
; |a1 〉〈a1| =

[
1 0
0 0

]
, |a2 〉〈a2| =

[
0 0
0 1

]
(10b)

The pure state (quantum density matrix) ρ can be approximately constructed from
eight basic quantum gates. For a logic tree the operation set and dataset are as follows:

(1) Operation set F = {+, ∗, //};
(2) Dataset T = {H, X, Y, Z, S, D, T, I}

H = 1√
2

[
1 1
1 −1

]
X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
S =

[
1 0
0 i

]
D =

[
0 1
−1 0

]
T =

[
1 0
0 eiπ/4

]
I =

[
1 0
0 1

]


where + means two matrices are added, ∗ means two matrices are multiplied, and //
means that one is randomly selected from two branches. H, X, Y, Z, S, D, T, I are eight basic
quantum gates (2 × 2 matrix) [29,30].

A logic tree is composed of operation set F and dataset T that determines the action
taken by the “machine economist” and calculates the closing price of the Dow Jones index
at the different trading points.

logicTree = f(F, T) (11)
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With a logic tree the “machine economist” can decide the action to be taken at and the
closing price x′t (d′t,t−1 can be calculated by the value tree in (5)):

at = logicTree(F, T) =
{

0, buy is excuted (degrees of belief is p1)
1, sell is excuted (degrees of belief is p2)

(12a)

x′t =
{

x′t−1 + d′t,t−1, if at = 0
)

x′t−1 − d′t,t−1, if at = 1
) (12b)

The next step is to find a way to optimize the logic tree with a group of satisfactory
strategies to guide the “machine economist’s” decisions. To optimize anything, there needs
to be: first, a selection of a good evaluation function, and two, how to acquire an optimal
solution. First off, in our model, the “machine economist” will try to maximize its expected
value when making any trading decisions. Thus, we need to evaluate how “fit” the result
(profit or deficit) of the “machine economist’s” decision are, which can be performed using
the expected value in (13) as a fitness function to optimize the logic tree by evolving them.
The whole idea of having GP go through an iterative evolution loop is to find a satisfactory
logic tree by means of learning historical data to obtain the most optimal solution. The
learning rules are as follows:

(1) If the Dow Jones index is up (q1):

i. If the “machine economist” bets the Dow Jones index is up to buy (a1 = 0), it
profits

(
d′t,t−1

)
;

ii. If the “machine economist” bets the Dow Jones index is down to sell (a2 = 1),
it deficits

(
−d′t,t−1

)
.

(2) If the Dow Jones Index is down (q2):

i. If the “machine economist” bets the Dow Jones index is down to sell (a2 = 1),
it profits

(
d′t,t−1

)
;

ii. If the “machine economist” bets the Dow Jones index is up to buy (a1 = 0), it
deficits

(
−d′t,t−1

)
.

The expected t-th value of the “machine economist” is as follows:

EVt =


= p1d′t,t−1, market is up and the “machine economist” buys with degrees of beliefp1
= −p2d′t,t−1, market is up and the “machine economist” sells with degrees of beliefp2
= −p1d′t,t−1, market is down and the “machine economist”buys with degrees of beliefp1
= p2d′t,t−1, market is down and the “machine economist” sells with degrees of beliefp2

(13)

Now we can define the fitness function for the logic tree as follows:

fitnesslogicTree = ∑n
t=1 EVt (14)

fitnesslogicTree maximizes “machine economist” expectations

( max
logicTree

(∑n
t=1 EVt));fitnessvalueTree applies negative feedback to make

(
d′t,t−1

equal→ dt,t−1

)
.

Logic tree together with value tree will reconstruct the trajectory of the Dow Jones index{(
q′k, x′k

)} equal→ {(qk, xk)}, and make a prediction about the future outcomes as follows:

d′n+1,n = valueTree(F, {n + 1, fl, av, h, l})− valueTree(F, {n, fl, av, h, l}) (15a)

an = logicTree({+,×, //}, {H, X, Y, Z, S, D, T, I}) =
{

0, “machine economist”takes action a1(buy)
1, “machine economist” takes action a2(sell)

(15b)

x′n+1 =

{
x′n + d′n+1,n, if an = 0

)
x′n − d′n+1,n, if an = 1

) (15c)
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3. Results

The Dow Jones index from 1 to 30 December 2022 is used for training the “machine
economist” as shown in Table 2. The first column indicates the state, where 0 means the
index is up and 1 means the index is down; the second column indicates the closing price
of the index. The first row is the initial condition, −1 indicates the state is uncertain, and
34,395.01 indicates the base closing price for machine learning.

Table 2. The Dow Jones index (1–30 December 2022).

−1 34,395.01

0 34,429.88

1 33,947.1

1 33,596.34

0 33,597.92

0 33,781.48

1 33,476.46

0 34,005.04

0 34,108.64

1 33,966.35

1 33,202.22

1 32,920.46

1 32,757.54

0 32,849.74

0 33,376.48

1 33,027.49

0 33,203.93

0 33,241.56

1 32,875.71

0 33,220.8

1 33,147.25

3.1. Dow Jones Index’s Value Tree

By applying the fitness function of fitnessvalueTree (6), the “machine economist” can
continuously learn the historical data to evolve a satisfactory value tree, as shown in Figure 1.

valueTreedowJones = (t ∗ fl) (16)

where t denotes the t-th trade of the Dow Jones index, and fl denotes the average fluctuation
of the closing price. The “machine economist” can use this value tree (valueTreedowJones)
to calculate the absolute value between two trading points of the Dow Jones index:

d′t,t−1 = t ∗ fl− (t− 1) ∗ fl = fl = 265 (17)
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By applying the fitness function fitnesslogicTree (14) and d′t,t−1 = 265(17), the “machine
economist” can continuously learn the historical data of the Dow Jones index, and evolve a
satisfactory logic tree as shown in Figure 2.
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The logicTreedowjones (18) provides two strategies {S1, S2}, and the “machine economist”
can randomly choose a strategy from the two and apply the strategy chosen to guide the
“machine economist” in choosing which action to take (buy or sell with a subjective degrees
of belief). If strategy S1 is chosen, then the “machine economist” is 100% sure that the index is
up (buy); if strategy S2 is chosen, the “machine economist” is 100% sure that the index is down
(sell). Combining logicTreedowjones (18) and d′t,t−1 (17), the “machine economist” can determine
the action to be taken at (19) and calculate the closing price x′t (20) of the Dow Jones index.

logicTreedowjones = ((D ∗ (H + D)) ∗ ((I//(Z + Z)) ∗ I)) (18)

• S1 = ((D ∗ (H + D)) ∗ ((Z + Z) ∗ I))→ |a1 〉〈a1| (p1 = 100%, p2 = 0)
• S2 = ((D ∗ (H + D)) ∗ (I ∗ I))→ |a2 〉〈a2| (p1 = 0, p2 = 100%)

at =

{
0, if S1 is selected
1, if S2 is selected

(19)

x′t =
{

x′t−1 + 265, if at = 0 (buy)
x′t−1 − 265, if at = 1 (sell)

(20)

By applying Equations (19) and (20), the “machine economist” can then reconstruct
the trajectory of the Dow Jones index, as shown in Figure 5 with 19 wins and 1 loss. The
logicTreedowjones randomly selects strategy S1 and strategy S2 with 9 buy events and 11
sell events, as shown in Figure 6, very close to the market 10 times up and 10 times down.
In Figure 6, a positive bar represents a buy action taken by the logic tree, and 100 means
with 100% degrees of belief to buy; a negative bar represents a sell action taken by the logic
tree, and −100 means with 100% degrees of belief to sell. The random actions taken by
logicTreedowjones to buy and sell imply that the evolution algorithm believes the market is
efficient, i.e., the market is walking randomly.

Although the “machine economist” approximately reconstructs the price trajectory of
the index, it can only make a 50/50 probability prediction of the future state of the Dow
Jones index (up or down) by randomly choosing strategy 1 (believe the index is up) or
strategy 2 (believe the index is down), i.e., without using partial differential equations and
joint probabilities. The “machine economist” independently discovers that the market is
efficient (random walk).



Entropy 2023, 25, 1213 10 of 12

Entropy 2023, 25, x FOR PEER REVIEW 10 of 12 
 

 

and joint probabilities. The “machine economist” independently discovers that the mar-
ket is efficient (random walk). 

 
Figure 5. Trajectory of the Dow Jones index (blue line is the observed closing price, and the red 
line is the computed closing price). 

 
Figure 6. The buy (positive) or sell (negative) actions taken by the logic tree with degrees of belief 
(buy: 100; sell: −100). 

4. Discussion 
More than a hundred years ago, Louis Bachelier found the similarity between stock 

price movement and Brownian motion by studying the Paris stock market data, and 
Bachelier applied a normal distribution to describe the movement in stock prices using 
stochastic differential equations. In this paper, the “machine economist” constructs a 
theory about the financial markets by studying a Dow Jones index time series, where the 
“machine economist” applies an algorithm and treats the data structure of the market as 
unknown, and the “machine economist” discovers that the market is efficient (random 
walk) through machine learning. It should be emphasized here that, unlike Bachelier, the 
“machine economist” discovers the efficient market hypothesis through machine learn-
ing with the evolution algorithm, without using any stochastic differential equations or 
rational economic man hypotheses. 

Figure 5. Trajectory of the Dow Jones index (blue line is the observed closing price, and the red line is
the computed closing price).

Entropy 2023, 25, x FOR PEER REVIEW 10 of 12 
 

 

and joint probabilities. The “machine economist” independently discovers that the mar-
ket is efficient (random walk). 

 
Figure 5. Trajectory of the Dow Jones index (blue line is the observed closing price, and the red 
line is the computed closing price). 

 
Figure 6. The buy (positive) or sell (negative) actions taken by the logic tree with degrees of belief 
(buy: 100; sell: −100). 

4. Discussion 
More than a hundred years ago, Louis Bachelier found the similarity between stock 

price movement and Brownian motion by studying the Paris stock market data, and 
Bachelier applied a normal distribution to describe the movement in stock prices using 
stochastic differential equations. In this paper, the “machine economist” constructs a 
theory about the financial markets by studying a Dow Jones index time series, where the 
“machine economist” applies an algorithm and treats the data structure of the market as 
unknown, and the “machine economist” discovers that the market is efficient (random 
walk) through machine learning. It should be emphasized here that, unlike Bachelier, the 
“machine economist” discovers the efficient market hypothesis through machine learn-
ing with the evolution algorithm, without using any stochastic differential equations or 
rational economic man hypotheses. 

Figure 6. The buy (positive) or sell (negative) actions taken by the logic tree with degrees of belief
(buy: 100; sell: −100).

4. Discussion

More than a hundred years ago, Louis Bachelier found the similarity between stock
price movement and Brownian motion by studying the Paris stock market data, and
Bachelier applied a normal distribution to describe the movement in stock prices using
stochastic differential equations. In this paper, the “machine economist” constructs a
theory about the financial markets by studying a Dow Jones index time series, where the
“machine economist” applies an algorithm and treats the data structure of the market as
unknown, and the “machine economist” discovers that the market is efficient (random
walk) through machine learning. It should be emphasized here that, unlike Bachelier, the
“machine economist” discovers the efficient market hypothesis through machine learning
with the evolution algorithm, without using any stochastic differential equations or rational
economic man hypotheses.

Based on the superposition principle of quantum mechanics, we introduce objective
(market) and subjective (trader) dual uncertainty to decision theory (Equations (7) and (8)).
“Quantum jump” is applied to explain the decision process: that is, the decision process is
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a projection from a pure state to a mixed state (Equation (9)). A quantum density matrix
in a pure state (ρ =|φ〉〈φ|) has quantum interference, such as Schrödinger’s cat who is
dead and alive at the same time, a market that is up and down at the same time or a trader
who can buy and sell at the same time; the mixed state is the classic statistical state, that is,
the market can only be up or down or a trader can only buy or sell. Furthermore, we used
eight fundamental quantum gates to construct a quantum density matrix (pure state), and
optimized the quantum density matrix through evolutionary algorithms.

Time series in the complex real world rarely have a certain probability distribution, so
the key is not to find the probability distribution from the time series but to find valuable
information (experience or knowledge) and apply the learned experience to make decisions.
In this paper, the “machine economist” uses both a logic tree and a value tree together to
study historical data in order to obtain useful information (information of the state and the
absolute value between two trading points). Instead of fitting a curve (price fluctuations of
the Dow Jones index) with just one equation, the “machine economist” first uses the value
tree to find the absolute value of the price difference between two trading points, and then
uses the logic tree to determine the action to be taken (with degrees of belief). The value
tree (objective) and logic tree (subjective) fit the curve together.

Author Contributions: All authors conducted the research and contributed to the development of
the model. H.X. contributed as an expert in quantum theory and non-linear science. L.X. contributed
to the research from the aspects of machine learning, decision theory and wrote the code. L.X. and
K.X. wrote this manuscript and performed the data analysis. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available on request.

Acknowledgments: We would like to thank the anonymous referees of this journal, whose comments
substantially improved the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Von Neumann, J.; Morgenstern, O. Theory of Games and Economic Behavior; Princeton University Press: Princeton, NJ, USA, 1944.
2. Savage, L.J. The Foundation of Statistics; Dover Publication Inc.: New York, NY, USA, 1954.
3. Binmore, K. Rational Decisions; Princeton University Press: Princeton, NJ, USA, 2009.
4. Kahneman, D.; Tversky, A. Prospect theory: An analysis of decision under risk. Econemetrica 1979, 47, 263–292. [CrossRef]
5. Simon, H.A. Reason in Human Affairs; Stanford University Press: Stanford, CA, USA, 1983.
6. Ashtiani, M.; Azgomi, M.A. A survey of quantum-like approaches to decision making and cognition. Math. Soc. Sci. 2015,

75, 49–80. [CrossRef]
7. Busemeyer, J.R.; Bruza, P.D. Quantum Models of Cognition and Decision; Cambridge University Press: Cambridge, UK, 2012.
8. Haven, E.; Khrennikov, A. Quantum Social Science; Cambridge University Press: Cambridge, UK, 2013.
9. Aerts, D.; Aerts, S. Applications of quantum statistics in psychological studies of decision processes. Found. Sci. 1995, 1, 85–97.

[CrossRef]
10. Aerts, D. Quantum structure in cognition. J. Math. Psychol. 2009, 53, 314–348. [CrossRef]
11. Busemeyer, J.; Franco, R. What is the evidence for quantum like interference effects in human judgments and decision behavior?

NeuroQuantology 2010, 8, S48–S62. [CrossRef]
12. Busemeyer, J.R.; Franco, R.; Pothos, E.M. Quantum probability explanations for probability judgment errors. Psychol. Rev. 2010, 118, 193.

[CrossRef] [PubMed]
13. Wang, Z.; Busemeyer, J.R. A quantum question order model supported by empirical tests of an a priori and precise prediction.

Top. Cogn. Sci. 2013, 5, 689–710.
14. Khrennikov, A.; Basieva, I.; Dzhafarov, E.N.; Busemeyer, J.R. Quantum models for psychological measurements: An unsolved

problem. PLoS ONE 2014, 9, e110909. [CrossRef] [PubMed]
15. Asano, M.; Basieva, I.; Khrennikov, A.; Ohya, M.; Tanaka, Y. A quantum-like model of selection behavior. J. Math. Psych. 2017,

78, 2–12. [CrossRef]
16. Basieva, I.; Khrennikova, P.; Pothos, E.M.; Asano, M.; Khrennikov, A. Quantum-like model of subjective expected utility. J. Math.

Econ. 2018, 78, 150–162. [CrossRef]

https://doi.org/10.2307/1914185
https://doi.org/10.1016/j.mathsocsci.2015.02.004
https://doi.org/10.1007/BF00208726
https://doi.org/10.1016/j.jmp.2009.04.005
https://doi.org/10.14704/nq.2010.8.4.350
https://doi.org/10.1037/a0022542
https://www.ncbi.nlm.nih.gov/pubmed/21480739
https://doi.org/10.1371/journal.pone.0110909
https://www.ncbi.nlm.nih.gov/pubmed/25343581
https://doi.org/10.1016/j.jmp.2016.07.006
https://doi.org/10.1016/j.jmateco.2018.02.001


Entropy 2023, 25, 1213 12 of 12

17. Ozawa, M.; Khrennikov, A. Application of theory of quantum instruments to psychology: Combination of question order effect
with response replicability effect. Entropy 2019, 22, 37. [CrossRef] [PubMed]

18. Ozawa, M.; Khrennikov, A. Modeling combination of question order effect, response replicability effect, and QQ-equality with
quantum instruments. J. Math. Psychol. 2021, 100, 102491. [CrossRef]

19. Yukalov, V.I.; Sornette, D. Physics of risk and uncertainty in quantum decision making. Eur. Phys. J. B 2009, 71, 533–548. [CrossRef]
20. Yukalov, V.I.; Sornette, D. Quantum probabilities as behavioral probabilities. Entropy 2017, 19, 112. [CrossRef]
21. Yukalov, V.I. Evolutionary Processes in Quantum Decision Theory. Entropy 2020, 22, 681. [CrossRef] [PubMed]
22. Xin, L.; Xin, H. Decision-making under uncertainty—A quantum value operator approach. Int. J. Theor. Phys. 2023, 62, 48.

[CrossRef]
23. Holland, J. Adaptation in Natural and Artificial System; University of Michigan Press: Ann Arbor, MI, USA, 1975.
24. Goldberg, D.E. Genetic Algorithms—In Search, Optimization and Machine Learning; Addison-Wesley Publishing Company, Inc.: New

York, NY, USA, 1989.
25. Koza, J.R. Genetic Programming, on the Programming of Computers by Means of Natural Selection; MIT Press: Cambridge, MA, USA, 1992.
26. Koza, J.R. Genetic Programming II, Automatic Discovery of Reusable Programs; MIT Press: Cambridge, MA, USA, 1994.
27. Von Neumann, J. Mathematical Foundations of Quantum Theory; Princeton University Press: Princeton, NJ, USA, 1932.
28. Dirac, P.A.M. The Principles of Quantum Mechanics; Oxford University Press: Oxford, UK, 1958.
29. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000.
30. Benenti, G.; Casati, G.; Strini, G. Principles of Quantum Computation and Information I; World Scientific Publishing: Singapore, 2004.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/e22010037
https://www.ncbi.nlm.nih.gov/pubmed/33285812
https://doi.org/10.1016/j.jmp.2020.102491
https://doi.org/10.1140/epjb/e2009-00245-9
https://doi.org/10.3390/e19030112
https://doi.org/10.3390/e22060681
https://www.ncbi.nlm.nih.gov/pubmed/33286454
https://doi.org/10.1007/s10773-023-05308-w

	Introduction 
	Quantum-like Machine Learning Algorithm 
	Value Tree 
	Logic Tree 

	Results 
	Dow Jones Index’s Value Tree 
	Dow Jones Index’s Logic Tree 

	Discussion 
	References

