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Abstract 

The greatest challenge of scientific discovery is how unknown becomes known. 
While there have been ways set forth to go about scientific discovery, most require 
rigorous work done by humans, and involve human scientists trying their best to sift 
out the most important information from vast amounts of raw data. This paper 
presents an AI assistant scientist that utilizes quantum superposition principle to 
model many different theories and applies genetic programming to evolve the most 
satisfactory theory from many possible ones. Setting out from an information 
perspective, multiple AI agents cooperate to find the valuable information from raw 
data: (1) produce a function for natural phenomena with complete information 
obtained from experimental data, and (2) produce a matrix for natural phenomena 
where complete information cannot be obtained from experimental data. Using the 
freefall trajectory of a light sphere and Schrodinger's Cat simulated thought 
experiment as case studies, we show that the AI assistant scientist is able to 
reconstruct the past trajectory and predict the future trajectory of the light sphere 
with the function it produces, and to reconstruct the cats' past states and 
probabilistically predict the cat's future states with the matrix it produces. We 
believe that the key to scientific discovery is how to obtain as much valuable 
information from raw data as possible and this can be done by the AI Assistant 
scientist that’s powered with the quantum-like evolutionary algorithm that we’ve 
developed. 

Keywords: scientific discovery, genetic programming, machine learning, AI assistant scientist, quantum-
like decision theory, quantum-like evolutionary algorithm 

 

1 Introduction 

Fundamentally the basis of scientific discovery is to find the regularities of the observable 
data on natural phenomena; this task has generally been accomplished by scientists. The 
question now becomes: is there a possibility of developing an algorithm that can 
automatically find regularities from raw data? Recently there has been research that has 
proposed a variety of algorithms to find regularities from raw data. Roger Guimera and 
Marta Sales-Pardo [1] developed a symbolic regression algorithm called the Bayesian 
machine scientist; Patrick Langley [2] developed BACON to rediscover Kepler’s third law; 
Lipson and Michael Schmidt [3] applied genetic programming to develop an algorithm 
called Eureqa which successfully recover equations describing the motion of one 
pendulum hanging from another; Steven Brunton, Joshua Proctor, and Nathan Kutz [4] 
developed an algorithm by applying sparse regression; Miles Cranmer et al. [5] developed 
a symbolic regression algorithm directly inferring Newton’s law of gravitation; Max 
Tegmark and Silviu-Marian Udrescu [6] developed an algorithm called “AI Feynman” to 
rediscover 100 equations from the Feynman Lectures on Physics; Cristina Cornelio et al. [7] 
developed an algorithm called “AI-Descartes” for scientific discovery.; and Krenn et al. [8] 
wrote a survey article about scientific understanding with artificial intelligence. 

This paper proposes a quantum-like evolutionary algorithm [9-10] based on the 
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quantum superposition principle and Darwinian natural selection that will attempt to find 
regularities from raw data through machine learning. Quantum superposition is utilized to 
model the many different “theories” to describe natural phenomena, and the evolutionary 
algorithm is then applied to optimize the most satisfactory “theory” from the many 
different ones. 
(1) If complete, accurate information of a natural phenomenon has already been 

observed through experiments: the quantum-like evolutionary algorithm will 
construct a “function tree” population and by means of natural selection evolve the 
most satisfactory function that is a definite description of that natural phenomena. 
Using the freefall data of a light sphere, we illustrate how the quantum-like 
evolutionary algorithm is able to find the function to fit the trajectory path of the 
light sphere. 

(2) If complete, accurate information of a natural phenomenon cannot be observed 
through experiments: the quantum-like evolutionary algorithm will construct a 
“matrix tree” population and by means of natural selection evolve the most 
satisfactory matrix to assess the trend of that natural phenomenon along with a 
probabilistic forecast. Using simulated data of Schrodinger’s Cat thought experiment, 
we illustrate how the quantum-like evolutionary algorithm is able to find the matrix 
that will assess whether the cat is dead or alive without opening the “box”. 

The structure of the paper is as follows: Section 2 details the methodology. Section 3 
are the results. Section 4 is the discussion. 

2 Methods 
 

 

Algorithm 1 Genetic Programming Algorithm 

Input: 

⚫ Historical dataset  {(tk, xk), k = 0,⋯ , N}; 

⚫ Setting: 

(1) Operation set F; 

(2) Dataset T; 

(3) Crossover Probability = 70%; Mutation probability = 5%. 

Initialization: 

⚫ Population: randomly create 300 individuals. 

Evolution: 

⚫ Loop: for i = 0 to 80 generations. 

a) Calculate fitness for each individual based on the historical dataset; 

b) According to the quality of fitness: 

i. Selection: selecting parents. 

ii. Crossover: generate a new offspring using the roulette algorithm based on 

crossover probability. 

iii. Mutation: randomly modify the parent based on mutation probability. 

Output: 

⚫ The fittest individual. 
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Where the operation set F and dataset T will be given according to the specific case 
presented, as shown in Algorithm 1. The quantum-like evolutionary algorithm utilizes 
Genetic Programming (GP) [11-14] to optimize the “function tree” and “matrix tree”, 
where GP is based on Darwinian evolution theory. The theory of Darwinian natural 
selection states that the fittest individual of a population survives by evolving generation 
after generation through means of crossover, mutation, and selection. What is crucial to 
the algorithm is to find a fitness function that will evaluate how fit each individual is in 
relation to the environment. The fitness function can be defined respective to the 
problem being presented. 

2.1 Function Tree 

For the freefall of a light sphere, the operation set is just a standard set of algebraic 
operators, while the dataset is just a time-dependent variable and including the constants 
of 1 to 9. 

Operation set: F = {+,−,×,÷, sin, cos, log, exp} 

Data set: T = {t, 1~9} 

 The fitness function of the function tree is defined by the Mean Absolute Error (MAE): 

fitnessfunctionTree =∑|xi − yi|

N

i=1

 (1) 

Where xi is the observed value, yi is the calculated value, N is the number of training data 
used for machine learning. The final function outputted is the fittest one of the 
population. 

functionoutput = min
1≤k≤M

{fitnessfunctionTree , k = 1,⋯ ,M} (2) 

Where M represents the number of individuals of the entire population. 

2.2 Matrix Tree 

A classical entity such as the freefall of a light sphere exhibits a definite “behavior” which 
its trajectory can be affirmatively described by a function. However, a quantum entity 
such as a decaying atom doesn’t exhibit any definite “behavior” which a density operator 
(matrix) is the only way to describe whether or not it decays probabilistically. Exactly 
where is the precise boundary between the classical entity and quantum entity? This is 
precisely the question Schrodinger posed when he came up with his cat thought 
experiment. By “entangling” a microscopic atom and a macroscopic cat, Schrodinger 
reached a paradox of a cat being dead and alive to show his skepticism about whether or 
not quantum mechanics is a complete theory. Schrodinger’s original description [15] 
about his cat thought experiment is as follows: 

 “One can even set up quite ridiculous cases. A cat is penned up in a steel chamber, 
along with the following device (which must be secured against direct interference by the 
cat): in a Geiger counter there is a tiny bit of radioactive substance, so small, that perhaps 
in the course of the hour one of the atoms decays, but also, with equal probability, 
perhaps none; if it happens, the counter tube discharges and through a relay releases a 
hammer which shatters a small flask of hydrocyanic acid. If one has left this entire system 
to itself for an hour, one would say that the cat still lives if meanwhile no atom has 
decayed. The psi-function of the entire system would express this by having in it the living 
and dead cat (pardon the expression) mixed or smeared out in equal parts.” 

 Essentially quantum theory is an experimental theory that fully conforms to statistical 
regularities (Born Rule), or simply put after repetitive observations approximately half the 
time the cat is alive and the other half of the time the cat is dead. For a single time, the 
experiment is performed (open the box) the cat is either dead or alive, there is no such 
thing as a simultaneously dead and alive cat; this can be confirmed by turning the “walls” 
of the sealed box transparent, the outside observer sees only a cat that is either alive or 
dead, and thus the final “fate” of the cat is determined by whether or not the atom 
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decays within an hour. The randomness of whether or not the atom will decay leads to 
incomplete information of the state of the cat which is what causes the external observer 
to never be able to fully know if the cat is dead or alive. It simply cannot be inferred that 
from the random decay of the atom that the cat is dead and alive simultaneously, it can 
only be inferred that the observer is ignorant of the cat’s state because of incomplete 
information about the decay of the atom. 

 To summarize there are two main points: 

(1) Entity: Because the decay of the atom is undetermined, the cat is either alive or 
dead thus the state of the cat is uncertain. 

(2) Observer: Because the cat is sealed in a non-see-through box, the observer is 
unable to deduce whether the cat is alive or dead due to incomplete information 
caused by the atom’s decay or non-decay. 

 The uncertainty of the entity’s state (the atom decays or not; the cat is alive or dead) 
is objective stochastic uncertainty, exactly like how a coin has the same chance of landing 
on either side when flipped. The stochastic uncertainty of the cats’ state is just the fact 
that each observation produces a different outcome; while the probability of each 
outcome that's produced is determined by the Born rule. 

 Subjective epistemic uncertainty is when the observer cannot deduce the state of the 
cat due to incomplete information. The essentials of epistemic uncertainty (the observer 
guesses if the cat is alive or dead) is just the fact that the observer lacks knowledge of an 
event that has happened. Due to the incomplete information of the event (the observer’s 
ignorance), the best the observer can do is to guess what may happen with a certain 
degree of beliefs. For example, one observer might firmly believe that the cat is 100% 
alive, while another might only believe that the cat is alive with 70% chance. 

 When observers’ have to “guess” the state of cat, they are faced with having to make 
decisions under incomplete information constantly; furthermore, the act of scientific 
discovery as a whole is just a decision-making process which observers seek out the 
regularities of natural phenomena from the information provided by experiments. When 
observers are able to obtain complete information from the experimental data about a 
natural phenomenon, then they will be able to describe the said phenomena with a full 
comprehension; when observers are unable to obtain complete information from the 
experimental data about a natural phenomenon, then they won’t quite be able to grasp 
the said phenomena with a complete understanding. Therefore, the most essential aspect 
of scientific discovery is to seek out useful information from experimental data. 

 Being the observer is there a way to foresee whether the cat is alive or dead without 
physically opening the box and peer inside to confirm? 

 Without looking inside the box, an approach could be the observer obtains useful 
information by learning historical data of whether the cat was alive or dead in previous 
iterations of the experiment and utilizing the obtained information to predict if the cat 
lives or dies; the very essence of this is just time-series forecasting under uncertainty. The 
challenges of time-series forecasting under uncertainty is as follows: 

⚫ Dual uncertainty: How to model both the uncertain state of the entity (cat is either 
alive or dead) and the epistemic uncertainty of the observer (believing if the cat is 
alive or dead). 

⚫ Strategy evaluation: How to find a satisfactory strategy that will allow the observer to 
predict the entity’s state as best as possible. 

2.2.1 Dual Uncertainty 

By superposing all the possible states of the entity (cat is either alive or dead) and all the 
possible actions that the observers can take (either believe that the cat is alive or believe 
that the cat is dead) together according to the principle of quantum superposition [16-20] 
we are able to postulate an effective model of both the potential states of the entity and 
the collective possible actions taken by all the observers as in (3) and (4). 
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|Q⟩ = c1|q1⟩ + c2|q2⟩ (3) 

Where |q1⟩ denoting the cat is alive; |q2⟩ denoting the cat is dead. ω1 =  |c1|
2 is the 

objective frequency that the cat is alive; ω2 =  |c2|
2 is the objective frequency that the 

cat is dead. 

|A⟩ = μ1|a1⟩ + μ2|a2⟩ (4) 

Where |a1⟩ denotes the observer believes that the cat is alive; |a2⟩ denotes the observer 
believes that the cat is dead. p1 = |μ1|

2 are the observer’s degree of beliefs that the cat 
lives; p2 = |μ2|

2 are the observer’s degree of beliefs that the cat dies. 

 The state of a complex system including a group of observers and the cat can be 
described as (5). 

|ψ⟩ =  c1|q1⟩ ⊗∏|a1
i ⟩

N

i=1

+ c2|q2⟩ ⊗∏|a2
i ⟩

N

i=1

 (5) 

Where N is the number of observers in the group. The density operator of the complex 
system can be described as (6). 

ρcat+observers = |ψ⟩⟨ψ| = ω1|q1⟩⟨q1| + ω2|q2⟩⟨q2| + [c1c2
∗|q2⟩⟨q1| ⊗∏⟨a1

i |a2
i ⟩ + H. C.

N

i=1

] (6) 

Where the third term is a non-diagonalization term that represents the superposition of 
the cat being alive or dead as well as the observer being unable to deduce whether the 
cat is alive or dead. Observers will randomly believe that the cat is alive or dead; the 
observers’ believing that the cat is alive or dead is “orthogonal”, and when the number of 
observers is very large then the expectations of all the observers for whether the cat is 
alive or dead are then zero as (7). 

∏⟨a1
i |a2

i ⟩

N

i=1

N→∞
→   0 (7) 

 (6) then becomes (8). 

ρcat+observers
N→∞
→   ω1|q1⟩⟨q1| + ω2|q2⟩⟨q2| (8) 

 When there are a large number of observers the subjective degree of beliefs of all the 
observers believing that the cat is alive or dead then tends to be very close to the 
objective frequency of whether or not the atom decays which is determined by the Born 
Rule as (9). 

ρcat = ω1|q1⟩⟨q1| + ω2|q2⟩⟨q2| (9) 

 The cat in the box is just a classical entity, it’s either alive or dead, which can be 
described as a mixed density operator as (9); there can’t be a “superposed” cat that’s 
alive and dead at the same time (Copenhagen Interpretation) and there isn’t a cat alive in 
one world and dead in another (Many Worlds Interpretation). 

 Due to incomplete information about the decay of the atom an observer outside the 
box cannot fully grasp whether or not the cat is alive or dead. Since the observer won’t be 
able know whether the cat is alive or dead without guessing, we can hypothesize that in 
the observer’s mind the cat could be “simultaneously alive and dead” which can be 
described as a pure density operator in (10). 

ρobserver = |A⟩⟨A| = p1|a1⟩⟨a1| + p2|a2⟩⟨a2| + μ1μ2
∗ |a1⟩⟨a2| + μ1

∗μ2|a2⟩⟨a1| (10) 

Where p1 are the observer’s degree of beliefs that the cat is alive, p2 are the observer’s 
degree of beliefs that the cat is dead. The third and fourth terms in (10) are the “quantum 
interference” terms that indicate the observer’s mind is undecided on whether the cat is 
indeed alive or dead, where the observer can “think” that the cat is both alive and dead. 
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 When an observer actually “decides” on whether the cat is alive or dead, a projection 
of pure state to mixed state happens in the observer’s mind with a certain degree of 
beliefs that the cat is alive or dead. The decision-making process of a single observer can 
be described as (11). 

ρobserver
Decide
→    ρobserver

′ = p1|a1⟩⟨a1| + p2|a2⟩⟨a2| (11) 

 The question now becomes: is it possible to find a pure state ρobserver to guide an 
observer to make the right choice of whether the cat is alive or dead with the highest 
degree of beliefs? 

2.2.2 Strategy Evaluation 

In this paper we develop an AI agent that simulates an observer's decision-making process 
which is illustrated by the projection from pure state ρagent to a mixed state ρagent

′ , and 

GP will be utilized to evolve a satisfactory pure state ρagent. The pure state is essentially 

just a 2x2 matrix, (11) can be described by the matrix form represented in (12). 

ρagent = [
ρ11 ρ12
ρ21 ρ22

] 
projection
→       ρagent

′ = [
p1 0
0 p2

] = p1|a1⟩⟨a1| +p2|a2⟩⟨a2| (12a) 

|a1⟩ = [
1
0
] , |a2⟩ = [

0
1
] ; |a1⟩⟨a1| = [

1 0
0 0

] , |a2⟩⟨a2| = [
0 0
0 1

] (12b) 

 Because the pure density operator ρagent is just an arbitrary 2x2 matrix, we can then 

approximately construct this density operator with the 8 most basic quantum gates as (13) 
leading it to become a "matrix tree". 

{
 H =

1

√2
[
1 1
1 −1

]  X = [
0 1
1 0

]  Y = [
0 −i
i 0

]  Z = [
1 0
0 −1

]

S = [
1 0
0 i

]  D = [
0 1
−1 0

]  T = [
1 0
0 eiπ 4⁄ ]  I = [

1 0
0 1

]

} (13) 

 We use the addition matrix, multiplication matrix, and the logic operator or to 
construct a “matrix tree”. The operation set and dataset of the GP algorithm for the 
“matrix tree” are as follows: 

Operation set: F = {+,∗,//} 

Data set: D = {H, X, Y, Z, S, D, T, I} 

 After constructing an individual "matrix tree" from the operation set F and dataset D 
above we can then construct a population of "matrix trees", and then by using the fitness 
function as the evaluation criteria, the most satisfactory density matrix ρagent from the 

population is evolved through generations of natural selection. The “matrix tree” is 
essentially a decision tree that guides the AI agent which strategies to take with 
corresponding actions. At any given time, the expected value under the current 
environment (the cat is alive or dead) and the corresponding actions (the AI agent “thinks” 
that the cat is alive or dead) can be represented as (14). 

ρcat = ω1|q1⟩⟨q1| + ω2|q2⟩⟨q2| (14a) 

ρagent = p1|a1⟩⟨a1| + p2|a2⟩⟨a2| (14b) 

ρcat⊗ ρagent = ω1p1|⟨q1||a1⟩|
2 + ω1p2|⟨q1||a2⟩|

2 +ω2p1|⟨q2||a1⟩|
2 + ω2p2|⟨q2||a2⟩|

2 (14c) 

Where (14a) is the cat observable operator; (14b) is the AI agent’s observable operator; 
and (14c) is the composite system of the cat and the AI agent. In (14c), the first term 
means that the cat is alive and the AI agent “thinks” the cat is alive (this is a reward), the 
second term means that the cat is alive and the AI agent “thinks” that the cat is dead (this 
is a punishment), the third term means that the cat is dead and the AI agent “thinks” that 
the cat is alive (punishment), and the fourth term is that the cat is dead and the AI agent 
“thinks” that the cat is dead (reward). The expected value for the AI agent is the possible 
scenarios of what the outcome could be paired with the state of the cat that’s being 
observed, as in (15). If the training data has N number of values, then the fitness function 
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for the "matrix tree" is defined as (16), and it is the total sum of all the expected values of 
each "decision made" by the AI agent. 

EVt = {

ω1p1, cat is alive and AI agent "thinks" so with probaility p1
−ω1p2, cat is alive and AI agent doesn

′t "think" so with probability p2
−ω2p1, cat is dead and AI agent doesn

′t "think" so with probability p1
ω2p2, cat is dead and AI agent "thinks" so with probability p2

 (15) 

fitnessmatrixTree =∑EVt

N

t=1

 (16) 

 If there are M number of individuals in a population of "matrix trees", the most 
satisfactory “matrix tree” is the one that possess the maximum fitness function that can 
be described as in (17). 

ρAI agent
output

= arg max
a
{fitnessmatrixTree, k = 1,⋯ ,M} (17) 

 By learning historical data, the more rewards that are reaped then the more accurate 
chance there is of predicting the next outcome of whether the cat is alive or dead. This 
also allows for no presumptions of the state of the cat, the more times the right outcome 
is “guessed” correctly by the AI agent; the best strategies and actions are effectively 
evolved as a result. Generation after generation of evolution, the best strategy naturally 
arises, which is the ultimate goal of the fitness function. The best strategy that has 
evolved by natural selection is the one that can be utilized to predict the future “fate” of 
the cat. 

3 Results 

The trajectory of the freefalling light sphere can be fitted by a function, while the 
simulated Schrodinger’s cats’ state can be probabilistically predicted by a matrix. The 
results presented in this section show the function and matrix produced by the AI 
Assistant Scientist to fit the light sphere and predict the cats’ state. 

3.1 Light sphere freefall 
Table 1 Data of the l ight sphere freefall  

 

Label Seconds(t) Distance(x) 

1 0.0861 1.1 
2 0.1084 2.3 
3 0.1250 3.4 
4 0.1380 3.6 
5 0.1820 6.4 
6 0.2430 11.2 
7 0.2460 12.8 
8 0.3170 21.7 
9 0.3500 24.2 
10 0.3630 27.0 
11 0.3810 31.4 
12 0.4250 39.4 
13 0.4510 42.3 
14 0.4690 47.0 
15 0.5200 56.8 
16 0.6020 72.0 
17 0.6120 73.5 
18 0.7100 93.0 
19 0.8120 120.1 
20 0.9100 139.3 
21 0.9110 141.0 
22 1.0820 173.5 
23 1.1810 195.0 
24 1.3890 240.5 
25 1.7150 317.8 

26 1.9500 373.0 

 The data used was downloaded from the UCI Machine Learning Repository (Function 
Finding) as Table 1. The dataset was divided into two parts: training dataset (1-20 
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datapoints) and verify dataset (21-26 datapoints). The fitting results of the training dataset 
is shown in Figure 1. The blue line is the original data, yellow line is the calculated data. 
The simulated distance of the freefalling light sphere is calculated by the “function 
tree” in (18). 

x = e6 sin√t (18) 

 The predicted distance of the freefalling light sphere is calculated by the “function 
tree” in (18), shown in Figure 2. The blue line is the original distance, the yellow line is the 
predicted distance. Table 2 shows the observed data and calculated data by the “function 
tree”; the Mean Absolute Percentage Error (MAPE) of the calculated distance is 4%. 

 

Fig. 1 The fitting results of the training dataset. The horizontal axis represents the label 
of each datapoint. 

 

Fig. 2 The verify results of the freefalling light sphere. 
Table 2 Verify results of the light sphere freefall 

 

Label Calc. Dis. Org. Dis. 

21 133.756 141.0 
22 176.798 173.5 
23 202.488 195.0 
24 255.784 240.5 
25 329.132 317.8 

26 368.342 373.0 

3.2 Schrodinger’s Cat 

The outside observer cannot decide the fate of the cat inside the box, it is whether or 
not the atom decays that decides if the cat lives or dies. From inside the box the cat is 
either alive or dead, but because whether or not the atom decays causes incomplete 
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information, and since the box is sealed an outside observer can’t fully grasp the state 
of the cat until the observer opens the box and looks inside to see whether the cat is 
actually alive or dead. If there is N number of boxes all set up containing a cat in 
accordance to Schrodinger's thought experiment (Geiger counter, radioactive 
substance, hydrocyanic acid), an outside observer would have to open every single 
one individually to see if the observer's original "guess" regarding the state of the cats' 
in each box is right or wrong, thus in turn the observer's judgement about whether 
each cat in every box is alive or dead then becomes a decision-making under 
uncertainty scenario. In this paper, we generate 25 boxes of "Schrodinger's cats" each 
labeled from 1 to 25, then we use a "digital coin" to simulate the decay or non-decay 
of the atom, when it "lands" on heads that means the atom decays (cat dies) while if it 
"lands" on tails then the atom does not decay (cat lives). The time series of simulated 
Schrodinger's cat thought experiments labeled 1 to 25 are shown in Table 3, 0 being that 
the cat is observed as alive and 1 that the cat is observed as dead. 

Table 3 Data of simulated Schrodinger’s Cat thought experiment 

 

Label (N) Cats’ state 
(q) 

1 0 
2 1 
3 0 
4 1 
5 0 
6 0 
7 0 
8 1 
9 0 
10 0 
11 0 
12 1 
13 0 
14 1 
15 1 
16 0 
17 1 
18 1 
19 1 
20 0 
21 1 
22 1 
23 0 
24 1 

25 1 

 The dataset was divided into two parts: training dataset (1-19 datapoints) and 
verify dataset (20-25 datapoints). We ran two consecutive training sessions on the 
training dataset. In both sessions, the training parameters were set the same; with 3 AI 
agents and a training frequency of 1000 repetitions. An optimized "matrix tree" is 
obtained after each session; this “matrix tree” is then utilized to produce 6 predictions 
whether the cat is alive or dead on the verify dataset, in which the final prediction 
regarding the fate of the cat is the result of 3 AI agents cooperating as in Table 4. For 
the specific forecast values in Table 4, please refer to the supplementary materials. 

Table 4 Prediction results of session 1 and session 2 
 

Session 1 Session 2 

Label Cats’ state 1 2 3 4 5 6 1 2 3 4 5 6 

20 Alive 1 1 1 1 0 0 0 1 1 1 1 0 

21 Dead 1 1 1 0 1 0 1 1 0 1 0 0 

22 Dead 1 0 1 0 1 1 0 1 1 1 1 0 

23 Alive 1 0 0 0 0 0 0 1 0 1 1 1 

24 Dead 0 1 0 1 0 1 0 1 1 1 0 1 

25 Dead 1 1 0 1 0 0 1 0 1 0 1 1 

              

 In Table 4, 0 represents that the AI agents “believe” that the cat is still alive, and 1 
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represents that the AI agents “believe” that the cat has died. For example, {1, 1, 1, 1, 0, 1} 
from the first possible forecast of session one represents the action sequence predicted 
through the cooperation of three AI agents that “believe” the state of the cat will be {Dead, 
Dead, Dead, Dead, Alive, Dead}, the odds of this forecast are 50%, and the rest of the 11 
possible forecasts can be deduced in the same way. The average odds of all 12 forecasts 
are 54.166% which is very close to the 50-50 frequency of the decaying of the atom (Born 
Rule). By empirical means, we've found that when the accuracy of the 12 single forecasts is 
more than 50% on average, then the forecast of the final action sequence obtained by 
means of majority rules will be greatly more accurate. For example; for the state of the cat 
labeled 20 in Table 4, the forecast outcomes of the 12 individual action sequences are 
{1,1,1,1,0,0,0,1,1,1,1,0}, in which of the 12 individual forecast outcomes only 4 "believe" 
that the cat is still alive, while 8 "believe" that the cat is already dead, thus according to 
majority rules the final forecast is "believe" that the cat is dead. For the cats labeled 21-25, 
the same rules can be applied to deduce a final action sequence for forecasting the state of 
the cat, as in Table 5. 

Table 5 Final forecast outcomes by majority rules 
 

Label Observed 
cats’ state 

Predicted 
cats’ state 

20 0 1 
21 1 1 
22 1 1 
23 0 0 
24 1 1 

25 1 1 

 In Table 5, 0 represents that the cat is alive, 1 represents that the cat is dead, and the 
odds of the final action sequence (obtained by applying majority rules) utilized to forecast 
the state of the cat are 83%. Therefore, the 83% odds illustrate that even if an external 
observer doesn't open the box and physically look inside to see if the cat is alive or dead, 
through the cooperation of 3 AI agents, the observer can somewhat "guess" correctly the 
state of the cat. Of course, even though the odds for the 6 short-term forecasts of the cats 
labeled 20-25 was 83%, but for a longer forecast horizon the accuracy rate will still be 
closer to 50-50. Our strategy when it comes to forecasting is to study more recent 
historical data, i.e. the cats labeled 1-19, to then make predictions about the next 6 
outcomes, i.e. cats 20-25. We believe that the outlying values of the past and the to-
happen values of the distant future for short-term forecasts are not of much significance 
as they are more useful for statistical analysis and other mathematical means; our strategy 
is to learn valuable information of the recent past to then forecast the near foreseeable 
future. 

4 Discussion 

For the freefalling light sphere, the quantum-like evolutionary algorithm is able to produce a 
near perfect (96% accurate) function to predict the light sphere's past and future trajectory 
because definite information of this natural phenomenon can be obtained from the observed 
data. Regarding Schrodinger's Cat, due to the lack of enough definite information (the atom 
randomly decays yet we still don't know why mother nature does so), the quantum-like 
algorithm cannot produce a definite function that can accurately state whether the cat is alive or 
dead, but instead is able to produce a matrix (projection operator) which reconstructs the 
historical states of the cats’ in the prior boxes (labeled 1-19) and then gives a satisfactory 
probabilistic prediction of what the cats' state (alive or dead) are in the next few boxes that are 
opened (labeled 20-25). 

  Regarding Schrodinger's Cat specifically, and quantum theory in general, there has been 
an ongoing debate for more than 100 years, and this debate will very likely continue [21-36]. 
Up until now there has been three major interpretations of the Schrodinger's cat paradox: 

(1) Copenhagen Interpretation: There is no point in discussing whether the cat is dead or alive 
without opening the box and looking (measuring); according to mathematical models the 
cat inside the box is in a superposed state and it is only when an external observer opens 
the box to look inside that the state of the cat "collapses" from a superposed state to a 
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state of being only alive or dead. 

(2) Many-worlds Interpretation: A physical macroscopic cat cannot be in a superposed state of 
dead and alive, thus there is no so-called "collapse" of what state the cat is in, but the act of 
looking (measurement) at the cat will cause a split into two parallel worlds; one in which 
the cat is alive and one in which the cat is dead. 

(3) QBism Interpretation: It is practically meaningless to discuss whether the cat in the box is 
alive or dead without an external observer opening it and looking inside (measure), what's 
more meaningful is what expectation the observer has in their mind when they open the 
box and looks to see if the cat inside is alive or dead, and based on the new information an 
observer obtains regarding the state of the cat they then update their beliefs about 
whether the cat indeed lives or dies. 

 The big conundrum of the Copenhagen Interpretation is the "wave packet collapse" (the 
quantum measurement problem); The issue with the many-worlds interpretation is the 
"splitting" of the many parallel worlds, but the bigger issue is that the many-worlds 
interpretation assumes the entire universe in existence is a huge complex wave function, and it is 
because of this assumption the Archilles heel is that no one can either prove this to be correct 
but at the same time it cannot be proven false, thus is a question that is beyond the very scope 
of the modern-day scientific methodology and current research; In a sense the Quantum 
Bayesian (QBism) interpretation somewhat avoids the "wave packet collapse" (the problem that 
the Copenhagen Interpretation faces), and avoids the "splitting of parallel worlds" (the challenge 
of the many-worlds interpretation) as well, where QBism believes the key to solving the 
Schrodinger's Cat paradox is being how much and what information the observer can grasp 
about the state of the cat, however the challenge is then how can QBism practically calculate the 
observer's degree of expected beliefs and then accurately predict whether the cat is alive or 
dead. 

 In our proposed interpretation of Schrodinger's Cat based on a quantum-like decision 
theory, we subtly fused together the advantages and somewhat avoided the shortcomings of the 
three interpretations mentioned above. The cat in the box of Schrodinger's thought experiment 
is just like any normal "classical" cat, inside it's only either alive or dead. For the observer as well, 
the external observer is also just a "classical" average Joe, someone who "measures" the state of 
the cat by opening the box and records information on whether the cat is alive or dead; however 
the act of opening the box by the observer in itself does not cause the cat to "collapse" from a 
superposed state of alive and dead to one or the other state, neither does it cause the cat to 
"split" into different parallel worlds where it lives in one and dies in the other. Of course, the 
external observer as a scientist who has not opened the box to see whether the cat inside is alive 
or dead yet will come up with various theories to "guess" the exact state of the cat in the box, 
that is by testing their hypothesis' through repeated experimentation with the aim of being able 
to specifically reconstruct historical experimental data and to make predictions about the future. 
In this paper the quantum-like evolutionary algorithm we proposed obtains a satisfactory 
“theory” by machine learning historical experimental data through the cooperation of multiple 
AI agents’ resulting in the successful reconstruction of the historical data on the cats’ past states 
and sufficient predictions about the cat’s future states. 

 Regarding quantum entities we shouldn't persistently ask "Does God play dice with the 
universe? (Determinism)" and "Does the moon exist when nobody looks at it? (Realism)", but 
instead we should be asking how much useful information can be obtained from the interactions 
between the measuring instruments and the quantum entities, and more importantly how to use 
the information obtained to reconstruct the historical states of the quantum entities and how to 
predict their future states in the best way possible. This paper has attempted to study this 
problem from an information perspective, by using a quantum-like decision theory to 
reconstruct historical events and to predict future events. As mortal human observers resident 
within the vast universe, we cannot propel ourselves to leap out of the universe to get a glimpse 
of the universe as a whole to formulate a theory of everything (obtain complete information of 
the entire universe); the best we can do is with the help of AI assistants to “play a game” with 
nature (or maybe even attempt to play dice with God, if God really does indeed play dice with 
the universe) by evolving a satisfactory enough theory through means of Darwinian natural 
selection to grasp as much useful information about the universe as possible on our quest to 
understanding the extragalactic cosmos. 
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