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Abstract
Decision-making under uncertainty is the unification of people’s subjective beliefs and the 
objective world. Quantum value operator is proposed to simulate people’s decision process. 
Quantum value operator guides people to choose corresponding actions based on their sub-
jective beliefs through objective world. The quantum value operator can be constructed 
from basic quantum gates and logic operations as a quantum decision tree and the genetic 
programming is applied to optimize quantum decision trees. Quantum expected value is 
used as fitness function to evaluate the observed outcomes (gain or loss) in the process of 
decision-making under incomplete information. Basically based on Darwin’s natural selec-
tion, a computational model that incorporating insights from quantum theory is proposed 
to describe and explain people’s decision-making in the real world.

1 Introduction

In general, there are multiple actions available for decision-making. Decision-making can 
be viewed as a two-phase process: evaluation process and selection process. People pre-
dict the consequences of each action, evaluate which action will maximize value, and then 
make a selection. Classical decision theory holds that rational-economic person knows the 
utility function as well as probability distribution through evaluation process then maxi-
mizes utility by an optimal selection [1–3]. Information completeness and selection con-
sistence are required for expected utility theory, however in the real world information is 
rarely complete and consistency of selection cannot be guaranteed due to complexity and 
people show irrational behaviors [4–7] which cannot be explained by classical decision 
theory.

Classical decision theory is a “black box”; people do not know what really happens 
inside the box. Scientists are trying to apply quantum theory to reveal how decisions 
are made. Recently many quantum-like decision theories [8–10] have been proposed 
based on quantum probability instead of classical probability to revise the mathemati-
cal structure that’s used in classical models. Aerts et al. first proposed to apply quantum 

 * Houwen Xin 
 hxin@ustc.edu.cn

1 Hefei, People’s Republic of China
2 Department of Chemical Physics USTC, Hefei, Anhui, People’s Republic of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s10773-023-05308-w&domain=pdf


 International Journal of Theoretical Physics           (2023) 62:48 

1 3

   48  Page 2 of 10

probability in decision theories [11, 12]; Busemeyer et  al. proposed a quantum-like 
model to describe human judgments and the order effect [13–15]; Khrennikov et  al. 
improved the Busemeyer quantum model by applying quantum instrument of quantum 
measurement theory [16–20]; Yukalov et al. proposed a rigorously axiomatic quantum 
decision theory [21–23]. Almost all mentioned well-developed quantum-like decision 
models applied the rigorous mathematical structure of quantum theory and discussed 
about the presence of the quantum-like interference effects in the process of decision-
making under uncertainty.

We are firm believer that people’s subjective belief cannot be computed by rigor-
ous mathematical formula; instead people’s belief can be learned from the past experi-
ence (historical data); the past experience is the unity of people’s subjective beliefs and 
objective facts observed, and the observed value (gain or loss) is the bridge between 
those two different worlds. The decision’s “black box” can be opened through the bridge 
of the observed value. Unlike other quantum decision-making theories that describe and 
explain decision-making process through rigorous mathematical structures of quantum 
theory (quantum probability theory), our proposed quantum decision theory discovers 
“laws” of thought by learning observed historical data (machine-learning by genetic 
programming), there is no wave function, no Schrödinger differential equation, and no 
quantum transition probability in our decision theory.. In this paper, quantum value 
operator is proposed to replace utility function to evaluate the value (gain or loss) in the 
process of decision-making under incomplete information and Darwin’s theory of evo-
lution is applied to construct a quantum decision tree based on natural selection (maxi-
mizing quantum expected value) to simulate the decision-making process. Quantum 
decision trees can be constructed from eight basic quantum gates as well as three logic 
operations, and it can be interpreted as a set of mixed strategies to guide people to make 
better decisions in the real world.

2  Quantum expected value

Usually people subjectively choose an action ai ∈
{
a
1
,⋯ , am

}
 where nature’s objec-

tive state is in qj ∈
{
q
1
,⋯ , qn

}
 when decisions were made, and the observed value vij 

depends on both the state of the nature and choice of brain shown in Table 1. Natural 
state describes the objective world; we hypothesize that an uncertain natural state can 
be represented by superposition of all possible states in terms of the Hilbert state space 
[24, 25] as in (1). Mind state describes the subjective world; we also hypothesize that 

Table 1  State-action-value 
decision table

State q
1

⋯ qj ⋯ qn

Action

a
1

  v11  ⋯    v1n

⋮ ⋱

ai ⋮ vij ⋮

⋮ ⋱

am vm1
⋯   vmn
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undecided mind state can be represented by superposition of all possible actions as in 
(2). Usually the information of decision-making under uncertainty is incomplete, the 
observed value can be represented by a mixed state’s density operator as a quantum 
value operator in (3). Quantum expected value can be represented as in (4).

where pi = |μi|2 is a person’s subjective probability in choosing an action ai , subjective 
probability represents the people’s degree of belief in a single event; ωj = |cj|2 is the objective 
frequency at which natural state is in qj , objective frequency represents the statistical results 
of multiple occurrences of objective states; value matrix vij = �⟨ai�qj⟩�2 is the observed value 
when the decision was made which a person chooses an action ai where nature’s state is in qj . 
Quantum expected value (4) suggests that a subjective and objective unified expected value is 
obtained through people’s beliefs which are based on natural states. The different actions peo-
ple took leads to different expected value; in other words; the actual outcome is created based 
on people’s subjective beliefs and objective natural states.

Before a decision-maker makes a decision, his/her mind state is in a pure state, a state in 
which they can decide which actions to take at the same time. This pure state is when the mind 
states of all actions are superposed in the decision-maker’s mind. When the people make the 
final decision, their mind state is then transformed from that pure state into a mixed state, 
which is when they decide to take one and only action ai with certain degrees of belief pi . 
Basically, this transformation is the brain choosing from one of the available actions as in (5).

As an example, we can represent the state of future market in terms of the Hilbert state 
space as in (6), trader’s mind state is represented as in (7), and quantum value operator which 
projects a trader’s beliefs onto an action of buying or selling a security is represented as in (8).

where �q
1
⟩ indicates a state in which the market is up and �q

2
⟩ indicates a state in which 

the market is down;�a
1
⟩ represents trader’s action to buy and �a

2
⟩ represents trader’s action 

(1)�ψ⟩ = �
j

cj�qj⟩,
�
j

�cj�2 = 1

(2)��⟩ = �
i

μi�ai⟩,
�
i

�μi�2 = 1

(3)V̂ =
�
i

pi�ai⟩⟨ai�,
�
i

pi = 1

(4)< �V >= ⟨ψ��V�ψ⟩ = �
i

pi
�
j

�cj�2�⟨ai�qj⟩�2 =
�
i

pi
�
j

ωjvij

(5)Decision ∶ ��⟩⟨�� → V̂ =
�
i

pi�ai⟩⟨ai�

(6)�ψ⟩ = c
1
�q

1
⟩ + c

2
�q

2
⟩

(7)��⟩ = μ
1
�a

1
⟩ + μ

2
�a

2
⟩

(8)V̂ = p
1
�a

1
⟩⟨a

1
� + p

2
�a

2
⟩⟨a

2
�
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to sell;p
1
 represents the subjective probability which a trader choose to buy and p

2
 repre-

sents the subjective probability which a trader choose to sell.
The process of trader’s decision-making is as in (9): 

3  Quantum decision tree (qDT)

A quantum value operator can be constructed from the basic quantum gates [26] and logic 
operations to form a qDT. The qDT composes of different nodes and branches. There are 
two types of nodes, non-leaf nodes and leaf nodes. The non-leaf nodes are composed of the 
operation set F as in (10); the leaf nodes are composed of the data set T as in (11) and (12). 
The construction process of a qDT is to randomly select a logic symbol from the opera-
tion set F as the root of the qDT, and then grows corresponding branches according to the 
nature of the operation symbol and so on until a leaf node is reached.

4  Quantum genetic programming (qGP)

A tree structure is used for encoding by genetic programming (GP) [27, 28], which is par-
ticularly appropriate to solve hierarchical and structured complex problems. The qDT can 
be optimized by the qGP as shown in Fig. 1. If market is up and a trader chooses to buy, 
the value Vk is positive and the trader would make a profit, if the trader choose to sell, 
the value Vk is negative and the trader would lose money; if market is down and a trader 
chooses to sell, the value Vk is positive and the trader would make a profit, if the trader 
choose to buy, the value Vk is negative and the trader would lose money. The purpose of 
QGP iterative evolution is to find a satisfactory qDT through learning historical data.

4.1  qGP algorithm

Input:

(9a)

�
v
11

v
12

v
21

v
22

�
diagonalization
������������������������������������������������→

�
λ
1
0

0 λ
2

�
normalization
��������������������������������������������→ V̂ =

�
p
1

0

0 p
2

�
= p

1
�a

1
⟩⟨a

1
� + p

2
�a

2
⟩⟨a

2
�

(9b)�a
1
⟩ =

�
1

0

�
, �a

2
⟩ =

�
0

1

�
;�a

1
⟩⟨a

1
� =

�
1 0

0 0

�
, �a

2
⟩⟨a

2
� =

�
0 0

0 1

�

(10)F = {+(ADD), ∗ (MULTIPLY), ∕∕(OR)}

(11)T = {H,X,Y,Z,S,D,T, I}

(12)

⎧⎪⎨⎪⎩

H =
1√
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1 −1

�
X =

�
0 1

1 0

�
Y =

�
0 −i

i 0

�
Z =

�
1 0

0 −1

�

S =

�
1 0

0 i

�
D =

�
0 1

−1 0

�
T =

�
1 0

0 eiπ∕4

�
I =

�
1 0

0 1

�
⎫⎪⎬⎪⎭



International Journal of Theoretical Physics           (2023) 62:48  

1 3

Page 5 of 10    48 

• Historical data set 
{
dk =

(
qk , vk

)}
 which includes N samples, each sample consists of 

natural state and value.
• Setting

1) Operation set F = {+, ∗, ∕∕}

2) Data set T = {H,X,Y,Z, S,D,T, I} , eight basic quantum gates
3) Crossover probability = 70%; Mutation probability = 5%.

Initialization:

• Population: randomly create 300 qDTs.

Evolution:

• for i = 0 to n (n = 100 generations):

a) Calculate fitness for each qDT based on historical data set.
b) According to the quality of fitness:

i Selection: selecting parent qDTs.
ii Crossover: generate a new offspring using the roulette algorithm based on 

crossover probability.
iii Mutation: randomly modify parent qDT based on mutation probability.

Output:

• A qDT of the best fitness.

An optimization problem mainly includes the selection of evaluation function and the 
acquisition of optimal solution. The evaluation function of qDT is a fitness function (15) 
based on quantum expected value Vk (13), and the optimal solution is obtained through 
continuous evolution by using selection, crossover and mutation as in (16) and qGP algo-
rithm; max

reward

{
Vi

}
 is the largest continuous rewards, max

loss

{
Vj

}
 is the largest continuous loss. 

β is the winning rate.

Learning signals
Value Vk
If ( ai == qj )

Vk = +vij (reward)
Else

Vk = -vij (loss)

Evolu�on

Decision-making 
process

Historical 
data

Decision:
choosing an ac�on ai with 

probability pi Learning

Fitness

Fig. 1  The evolution of the quantum value operator
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The k-data of rebar contract rb1901 from 2018/1/16 to 2018/12/7 traded on the Shang-
hai Futures Exchange is used as the historical data shown in Fig. 2; the subjective beliefs 
of the trader simulated by qDT in each transaction are shown in Fig. 3. The optimized qDT 
after 100 generations of evolution is shown in Fig. 4. Based on the qDT as in (17) (Fig. 4), 
there are eight strategies with different subjective beliefs that the trader took.

The qDT which simulates people’s decision process can be interpreted as a mixed strat-
egy. Each qDT includes a set of strategies (in this case, eight strategies), each of which 
is a mixed density operator ( 

∑
i pi�ai⟩⟨ai� ); Each time you make a decision, first choose a 

strategy Si , and then choose an action ai (buy or sell) based on the degree of belief  pi(p1 or 
p
2
) . Detail information of the first eight transactions is shown in Table 2. For the first trans-

action strategy S
1
 was applied by the trader to buy with 88% belief, the trader loss money 

because the state of market is down 
(
vij = −v;i ≠ j

)
 ; for the seventh transaction strategy  S

1
 

was applied by the trader to buy with 88% belief, this time the trader make a profit because 
the state of market is up 

(
vij = v;i = j

)
 ; for the eighth transaction strategy S

7
 was applied 

(13)< Vk >= piωj⟨qj�Ai�qj⟩,Ai = �ai⟩⟨ai�

(14)⟨qj�Ai�qj⟩ = ⟨qj��ai⟩⟨ai��qj⟩ = �⟨ai�qj⟩�2 = vij =

�
−v, i ≠ j

v, i = j

(15)ff itness = β

�
N�

k=0

< Vk >

�⎛⎜⎜⎝

max
reward

�
Vk

�

max
loss

�
Vk

�
⎞⎟⎟⎠

(16)qDT
evolution
������������������������������→ argmax

qDT ∈ (F ∪ T)

(
ff itness

)

Fig. 2  Price fluctuation of rebar (contract rb1901) traded on Shanghai Futures Exchange
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by the trader to sell with 84% belief, the trader make a profit because the state of market is 
down 

(
vij = v;i = j

)
.

5  Discussion

Human beings record a large amount of data through the observation of the world. It is 
through the study of the recorded data that human beings gradually understand the objec-
tive world and build a simplified subjective “world model” in the brain. People make 

(17)
qDT = ((D ∗ (Y + (((((X∕∕(D ∗ (S + Z)))∕∕I)∕∕I)∕∕(T + H)) + T)))∕∕(((I ∗ Y) + (T∕∕Y)) + (I∕∕Y)))

∙ S1 = (((I ∗ Y) + T) + I) → V̂ = 0.88�a1⟩⟨a1� + 0.12�a2⟩⟨a2�(88% belief to buy, 12% belief to sell)

∙ S2 = (((I ∗ Y) + T) + Y) → V̂ = 0.83�a1⟩⟨a1� + 0.17�a2⟩⟨a2�(83% belief to buy, 17%belief to sell)

∙ S3 = (((I ∗ Y) + H) + I) → V̂ = 0.97�a1⟩⟨a1� + 0.03�a2⟩⟨a2�(97% belief to buy, 3% belief to sell)

∙ S4 = (((I ∗ Y) + H) + Y) → V̂ = 0.5�a1⟩⟨a1� + 0.5�a2⟩⟨a2�(50% belief to buy, 50% belief to sell)

∙ S5 = (D ∗ (Y + (X + T))) → V̂ = 0.43�a1⟩⟨a1� + 0.57�a2⟩⟨a2�(43% belief to buy, 57% belief to sell)

∙ S6 = (D ∗ (Y + (I + T))) → V̂ = 0.68⟨a1� + 0.32�a2⟩⟨a2�(68% belief to buy, 32% belief to sell)

∙ S7 = (D ∗ (Y + ((D ∗ (S + Z)) + T))) → V̂ = 0.16�a1⟩⟨a1� + 0.84�a2⟩⟨a2�(16 %belief to buy, 84 % belief to sell)

∙ S8 = (D ∗ (Y + ((T + H) + T))) → V̂ = 0.24�a1⟩⟨a1� + 0.76�a2⟩⟨a2�(24% belief to buy, 76% belief to sell)

Fig. 3  A trader’s beliefs of each transaction simulated by the qDT (positive: buy, negative: sell)
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Fig. 4  An optimized quantum decision tree

Table 2  Details of the first eight transactions

Market State Action Selected Strategy Expected Value Belief

down buy S
1
= (((I ∗ Y) + T) + I) -8.0 88%

up buy S
1
= (((I ∗ Y) + T) + I) 10.0 88%

up buy S
8
= (D ∗ (Y + ((T + H) + T))) 0.0 24%

up buy S
3
= (((I ∗ Y) + H) + I) 3.0 97%

up sell S
5
= (D ∗ (Y + (X + T))) -5.0 57%

up buy S
8
= (D ∗ (Y + ((T + H) + T))) 3.0 24%

up buy S
1
= (((I ∗ Y) + T) + I) 16.0 88%

down sell S
7
= (D ∗ (Y + ((D ∗ (S + Z)) + T))) 2.0 84%
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decisions by considering both the world’s objectivity and the subjectivity of their beliefs. 
Observed value is a bridge between objective world and subjective beliefs.

Von Neumann’s expected utility decision theory is based on objective frequency, and 
Savage’s theory is about subjective beliefs. Based on the state superposition of quan-
tum theory, we propose a subjective and objective unified quantum decision theory, 
and a computational model not rigorous mathematical model is proposed to describe 
and explain decision-making under uncertainty. Instead of utility function used in clas-
sical decision theory, quantum value operator (quantum decision tree) is proposed to 
simulate brain’s decision process under incomplete information. A quantum decision 
tree computes the probability of taking an action due to incomplete information and the 
selected actions usually cannot be given by a definite cause, but can only be obtained 
probabilistically through machine-learning historical data. The beliefs of decision mak-
ers are dynamically changing, and we believe that quantum value operator more realisti-
cally simulates the people’s decision process in the real world.
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